

Dr. Luke Keeney

CRC ORE
General Manager
- Implementation

Site implementation projects overview

CRC ORE Annual Assembly 2017

Business Cooperative Research Centres Programme

Site implementation projects overview

CRC ORE Annual Assembly 2017

Role of Site Implementation in CRC ORE

Program 1 Define

Improving feed quality

Program 2 Separate

Enabling mass separation

Program 3 Extract

Increasing extraction efficiency

Program 4 Control

Maximising system-value

Objectives & Aims of Site Implementation Projects

Pilot Scale Application and Assessment of resulting changes

Key metrics are improved productivity & capital intensity

Demonstrate Integrated System Value Solutions

Conducted through simulation, modelling and site deployment

Large Scale Site Implementation

Demonstrate the value and application of technology outputs

Business Case models and Organisational Change required for routine implementation

Operating Philosophy

End User Driven Partnerships

Ensure technology outcomes are matched to industry needs and expectations

Deploy new technology and operating strategies on identified sites to demonstrate value

Consortia based teams to facilitate technology transfer and commercial uptake

Innovation Delivery Group Role

ACCESSING TECHNICAL AND LOGISTICAL SPECIALISTS

IDG is an internal group of industry professionals available to support sites and research providers as a 'translation service' between inventors and operators

SUPPORTING INTEGRATED SITE DEPLOYMENT AND IMPLEMENTATION

IDG develops clear value proposition for technology solution stacks with a stage gated path to implementation to provide support for early site adopters

NURTURING THE PROTOTYPE TO PRODUCT TRANSITION

Key role of IDG group is to support site demonstration and validation of emerging technologies by working closely with sites and driving outcomes

Site Implementation Project Summary CRC ORE II – Grade Engineering

Evolution of Site Projects in CRC ORE II

As Grade Engineering continues to evolve — CRC ORE is actively seeking to form Technology Transfer Partnerships to investigate commercialisation opportunities for METS EP's.

Key Project – Crushing & Coarse Separation in the Pit Delivery Theme

The largest operational cost of Grade Engineering is the rehandling of material to processing destinations

Strategies that minimise rehandling will increase value from Grade Engineering

A step change in value could be achieved if Grade Engineering is included in material transfer during mining to eliminate rehandling

Key Project – Crushing & Coarse Separation in the Pit Delivery Theme

Investigating Grade Engineering
"Platforms" for upgrading via
screening and sensing

BHP technologies
mining3

Grade Engineering Production Trials – Minera San Cristobal

Production Trial Aim:

- To prove the upgradability of MSC ores via screening at production scale
- Campaign Grade Engineered and direct ROM through the concentrator to validate the grade improvement
- Understand operational aspects of implementing Grade Engineering

2 options to source material:

- ROM ex-pit
- Stockpile

MSC Estimates Grade Engineering value >\$1b

Trial 1: Ex-Pit Ore

~2-3 Months Screening

156,000t @ 0.79% Zn

39,000t @ 1.94% Zn 20% Mass Pull Top Size ~35mm Destination TBD (Stockpile/Mill/Waste)

3 Day Campaign through Mill 156,000t @ 1.50% Zn ~11% increase in Zn Feed Grade

Trial 2: Mineralised Stockpile

~3 Months Screening

221,000t @ 0.64% Zn

39,000t @ 1.7% Zn

15% Mass Pull Top Size ~Unknown Destination TBD (Stockpile/Waste)

Direct Feed from Mine 117,000t @ 1.35% Zn

3 Day Campaign through Mill 156,000t @ 1.44% Zn ~7% increase in Zn Feed Grade

Integration of Grade Engineering Levers – Bulk Sensing & Screening

Integration of Grade Engineering Levers – Particle Sorting & Screening

Very close linkages
to Natural
Deportment due to
preparation of
narrow size fraction
for sorting

Operationalising Grade Engineering – Instrumenting the Bench

Grade Engineering Lever Integration & Novel Exploitation Options Driving Value

For more information about CRC ORE Site Implementation Activities

Contact Us

Luke Keeney

0416 070 310

l.keeney@crcore.org.au

crcore.org.au

