

Dr. Mohsen Yahyaei

CRC ORE

AMIRA P9Q Project Leader

UQ-JKMRC

AMIRA P9Q
CRC ORE Annual Assembly 2017

P9Q Translating Research into Industry Tools

Mohsen Yahyaei SMI-JKMRC

CRCORE Annual Assembly Brisbane – November 2017

Translate P9 research outcomes to an integrated process prediction tool

Capability enabled via an industry tool:

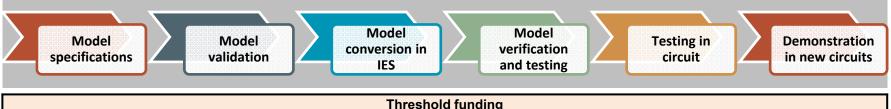
Integrated Extraction Simulator (IES)

Differentiator

Current simulators Single ore type

New capability

Multi-ore: Comminution


Multi-mineral: Recovery

(gravity, magnetic, flotation, ...)

AMIRA P9Q—Translating research into industry tools

A focussed initiative designed to quickly deliver value to industry

speci	fications validatio	n les in new circuits
Threshold funding		
	Particle Based Flotation Model	Enhanced predictive capabilities added by relating ore floatability to particle surface liberation properties and predicting entrainment as a function of particle properties
	2. Mechanistic Flotation	 Independent models of pulp and froth zones i. mechanistic froth transportation ii. predict effect of particle attributes and operating conditions on entrainment and water recovery
200	3. Hydro-cyclone	Cut-size, separation and water split. Response to continuous density distribution.
	4. Cone Crusher	Semi-mechanistic. Response to closed side setting, speed, chamber design. Full validation in Tier 1
HOG-	5. HPGR	Piston and Die breakage. Verified on fully liberated material.
	6. Dry Screen	Multiple decks, variable inclination, aperture +2mm. Response to generic media, throw, frequency. Particle size distribution predicted at every point on screen.
	7. Jig	Response to component density, relative cut height, jig area, throughput.
Total Bases	8. Dense Medium Separator	Basic equipment model.
3 2 4	9. VR2 SAG/AG Mill	Accurate throughput-filling relationship. Power based breakage, improved discharge and slurry holdup. Full multicomponent in Tier 1
	10. Mechanistic Mill	Use particle fracture tests. Inherently multi-component and predictive. Response to liner design, ball size & mill conditions. Full validation in Tier 1.
	11. RoM Ball Mill	Same as VR2 with high ball load.

AMIRA P9Q project – Collaborative Research

Research collaborators

University of Queensland

Process modelling, SAG mill, stream structure

Chalmers University

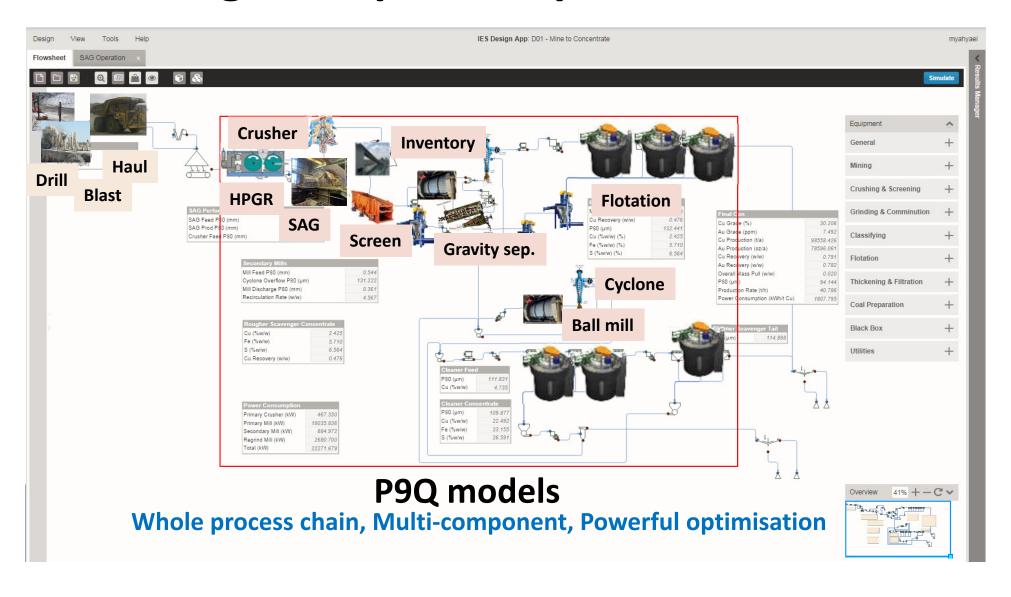
Crushers, dry screening

University of Cape Town

Flotation, classification, fine screening

Federal University of Rio de Janeiro

Mechanistic ball mill model, gravity separation



Hacettepe University

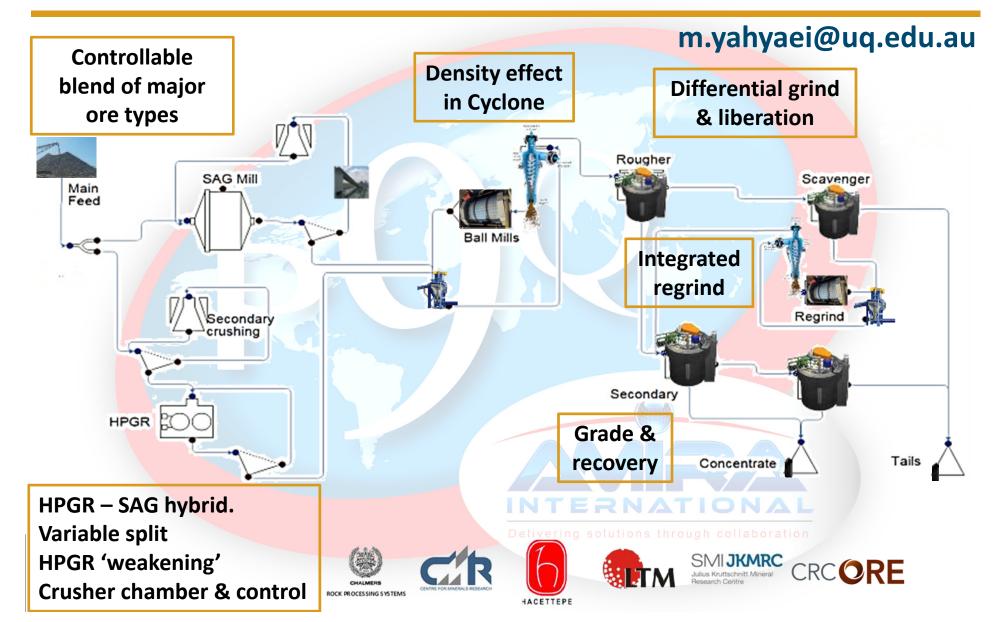
HPGR, dry classification, VRM

Integrated process prediction tool

Six Process models in IES P9Q platform

SAG VR2, Cone Crusher, Hydrocyclone, Coarse Screen, HPGR, Jig

Hands-on Workshop with IES


- Introduction to IES (CRCORE team)
- Process models (Researchers)

IES workshop in Brisbane – August 2017

Creating value through translating research models into industry process improvement tools

Thank you

Dr. Mohsen YahyaeiAMIRA P9Q Project Leader
UQ-JKMRC

crcore.org.au

