Mr. Paul Revell
CRC ORE
General Manager
- Research & Innovation

CRC ORE Research Pipeline Overview
CRC ORE Annual Assembly 2017
CRC ORE Applied Research Program Overview – Based on End Point Deployment

Current

1. Preferential grade deportment by size
2. Differential blasting for grade by size
3. Sensor based BULK sorting
4. Sensor based STREAM sorting
5. Coarse gravity separation

Planned

1. In-situ Sensing Mineral
 - Elemental: Imex, Sodern, CSIRO
 - Mineral: Scan Sensing – IDEX, Sodern, CSIRO

2. Instrumentation & Application – Imex, Sodern, Atlas, Mining3, Orica, IDG (ITB)

3. Heterogeneity Tools – CODES, Mining3, Data61, Uni. of Adelaide, Curtin

4. Blast Design – Orica, Mining3, IDG

5. Spatial Modelling – IDG, University of Adelaide

6. Response Ranking & Economic Optimisation – IDG

7. In Pit Crush, Separate & Surge Control – Hatch, Mining3

8. Breakage Response Modelling – P420F - Curtin, P9Q - JKMRC

9. Comminution Optimised for Grade Engineering – JKMRC, Curtin, CSIRO, Gekko, IDG

10. Integrated Extraction Simulator – IDG, JKTech, P9Q, P420F, Curtin, UQ, QUT

11. Program 4: Control Architecture for Grade Engineering (GE)
 - GE Scenario Planning, GE Mine Planning & Scheduling, Multi-dimensional Data Analytics, Decision Logic, Organisational Change (Manufacturing Execution System)

12. Blast Design – Orica, Mining3, IDG

13. Breakage Response Modelling – P420F - Curtin, P9Q - JKMRC

14. Coarse Separation – DMS, IPJ, Leach, Reflux Classifier, Coarse Particle Flotation
<table>
<thead>
<tr>
<th>Development Projects</th>
<th>Partners</th>
<th>Timeline is calendar year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAM 1: DEFINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1.001 & P1.002: Gamma Activation Analysis for geo-sensing</td>
<td>CSIRO</td>
<td></td>
</tr>
<tr>
<td>P1.002: PGMAA elemental logging for Instrumenting the Bench</td>
<td>CSIRO</td>
<td></td>
</tr>
<tr>
<td>P1.003: Magnetic resonance of covellite for geo-sensing</td>
<td>CSIRO</td>
<td></td>
</tr>
<tr>
<td>P1.004: Ge-tox an online tool for assessing Grade Engineering opportunities</td>
<td>Uni of Adelaide</td>
<td></td>
</tr>
<tr>
<td>P1.005: Upconversion fluorescence of minerals for geo-sensing</td>
<td>Uni of Adelaide</td>
<td></td>
</tr>
<tr>
<td>P1.006: Geological controls on grade by size department</td>
<td>UTAS</td>
<td></td>
</tr>
<tr>
<td>P1.007: Surface techniques for geo-sensing</td>
<td>UTAS</td>
<td></td>
</tr>
<tr>
<td>PROGRAM 2: SEPARATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2.001: Sensors for rock mass characterisation</td>
<td>Mining*</td>
<td></td>
</tr>
<tr>
<td>P2.002: Blast design optimisation for Grade Engineering</td>
<td>Mining*</td>
<td></td>
</tr>
<tr>
<td>P2.003: Orebody DNA</td>
<td>Mining*</td>
<td></td>
</tr>
<tr>
<td>P2.004: IUBS analysis for Geo-sensing</td>
<td>UQ, Mining*</td>
<td></td>
</tr>
<tr>
<td>P2.005: Simulation of Grade Engineering mining processes</td>
<td>UQ, Mining*</td>
<td></td>
</tr>
<tr>
<td>AS.001: Orebody DNA - Volumetric Analytics for Grade Engineering</td>
<td>Mining*</td>
<td></td>
</tr>
<tr>
<td>PROGRAM 3: EXTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3.001: IES Baseline Project</td>
<td>CRC ORE</td>
<td></td>
</tr>
<tr>
<td>P3.006: AMIRA P50</td>
<td>UQ, Amira and others</td>
<td></td>
</tr>
<tr>
<td>P3.005: AMIRA P420F</td>
<td>Curtin</td>
<td></td>
</tr>
<tr>
<td>P3.007: Simulation Stream Bijubel</td>
<td>UQ, AMIRA and others</td>
<td></td>
</tr>
<tr>
<td>P3.008: Commminution optimisation for Grade Engineering</td>
<td>JKMRC</td>
<td></td>
</tr>
<tr>
<td>P3.010: Beneficiation of Hard Rock Lithium Ores</td>
<td>Curtin</td>
<td></td>
</tr>
<tr>
<td>PROGRAM 4: CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4.001 & P4.003: Data driven models</td>
<td>UQIT</td>
<td></td>
</tr>
<tr>
<td>P4.004: Implementation Accelerator</td>
<td>Claro</td>
<td></td>
</tr>
<tr>
<td>P4.007: Optimised Production Scheduling for Grade Engineering</td>
<td>Curtin</td>
<td></td>
</tr>
</tbody>
</table>
Future Research themes

Geo-sensing
- Multi-sensor integration.
- Rapid hold drilling & in-situ sensor applications.
- Direct sensing of mineralisation & blast optimisation parameters.

Resource Interpretation
- Geo-spatial modelling.
- Enhanced orebody characterisation within Grade Engineering context.
- Integrating Grade Engineering attributes into mine planning tools.

Separation
- Gravity separation technologies (GE lever 5).
- Enhancing the linkage between comminution & flotation models.
- Developing the control architecture for Grade Engineering implementation.
P1-005: Upconversion Fluorescence (UF) for real-time mineral identification

Create Upconversion Fluorescence facility and explore UF from minerals to find mineral-specific UF for real-time mineral sensing

Affiliation
- 4 academic staff
- 1 PhD students
- Sept 2016 - Sept 2019

Resources
- Laser and optics development
- Luminescence studies

Key results to date
- Facility creation on track – key hardware integrated into facility; software integration on track.
- Initial tests of system performance, data collection and processing techniques underway.

What success looks like
- Goal 1: Library of UF wavelengths suitable for real-time identification of specific mineral species.
- Goal 2: Concept demonstration of sensor systems for excitation and detection UF from target minerals.
- Benefits: real-time, mineral species-specific, non-contact; applicable to multiple areas of mining and processing.
P1-006: Geometallurgical controls on grade by size
Evaluate how mineralogical/textural heterogeneity drives grade by size fractionation for predictive modelling

Affiliation
• Nathan Fox and Ron Berry
• 2 PhD and 2 MSc students
• October 2016 to June 2021

Resources
• Mineral systems
• Ore mineralogy and textures
• Geometallurgy

Key results to date
• Workflow designed to utilise emerging technologies for mineral mapping and feature extraction
• Dedicated study sites (Au) with integration in other CRC ORE study sites (porphyry Cu).

What success looks like
• Geometallurgical framework for predicting grade by size fractionation as a block model attribute.
• Provides a physical understanding of controls on mineral fractionation in mineral systems.
P1-009: **Gamma activation for bulk gold ore sorting**

A design study for a pilot bulk sorting plant capable of measuring gold on-belt at ~0.1-0.2ppm

Affiliation

- 4 researchers
- 1 student
- Apr 2018 - Mar 2018

Resources

- Measurement Physics

Key results to date

- Good results for simulated sensitivity and plant shielding.
- Proven success with switching of detectors.
- Sensible sample results.
- No direct measure of gold on-belt contemplated before this research project.

What success looks like

- Direct gold measurement for relevant grades and ore flow rates.
- A pilot demonstration of the technique, preferably at Kalgoorlie Hub.
- Apply in mining situations to reject significant fractions of gangue through bulk ore sorting.
In-Situ Rock Mass Characterisation - Phase 1

Identify superior approaches and systems for characterising in-situ material to enable optimal blast designs for ore upgrading

Affiliation

- 4 Mining3 staff,
- Technology experts
- Nov 2016 - Dec 2017

Resources

- Differential blasting
- Ore body knowledge

Specialisation

- Identified existing and emerging technologies for application to in-situ rock mass characterisation.
- Assessed new approaches to combining these for application and deployment.

Key results to date

- Platforms such as enhanced MWD, drones or rovers with multiple sensors, integrated via data fusion techniques
- Determination of in-situ spatial heterogeneity at the sub-metre scale required for differential blast design

What success looks like
P2-002: Advanced blast design for maximising value through Grade Engineering levers
Developing optimised designs for GE in a production environment

Affiliation
• 6 Mining3 staff,
• 1 MEng student
• July 2017 - Feb 2018

Key results to date
• Fragmentation models and optimisation methods reviewed and selected.
• MVP architecture decided and being coded.

Resources
• Differential Blasting
• Optimisation

Specialisation
• 6 Mining3 staff,
• 1 MEng student
• July 2017 - Feb 2018

What success looks like
• A module that enables any Drill and Blast Engineer on site to create a GE differential blast design with the optimal value identified via IES
• Moving from a single blastability index for the blast to consider spatial heterogeneity of grade, rock mass and response ranking.
P2-003: Searching for Orebody DNA

Testing methods to identify and learn the recurring patterns in orebody mineralogy and then predict mineral heterogeneity within sparse datasets

Affiliation

• 6 people, 1.8 fte
• Students etc..
• Mar 2017 - Mar 2018

Resources

• Data analytics
• 3D feature and pattern detection

Specialisation

Key results to date

• Results obtained for non-linear analytics, k-means clustering, image and signal processing methods, feature detection, machine learning.

What success looks like

• Demonstration of algorithms that avoid large scale averaging that occurs with conventional (e.g. Kriging) resource modelling methods

• Spatial and volumetric prediction of grades at higher resolution than conventional methods.
P2-004: Real-time elemental and mineralogical analyser based on combined LIBS and Mid-IR spectroscopy

Proof of concept study to develop a novel new application of combined LIBS - Mid-infrared quantum cascade laser (QCL) spectroscopy for real time on-line mineralogical characterisations.

Affiliation

- 9 Research Officers
- 3 Technical Officers
- Aug 2017 - July 2019

Resources

- Optical sensors for
- Real-time process control

Key results to date

- Review of current LIBS and IR technologies for mineral industry applications nearly completed
- Comparison of XRF, MLA and LIBS measurements on the same tiles in progress.

What success looks like

- Positive outcomes would generate a TRL5 ready application with proof-of-concept at lab scale for mineralogy measurement.
- Ready for field deployment and transfer to METS companies
- Fast, non-nuclear, in-field method for mineral assessment
P3-005: Coarse Particle Liberation & Recovery

Develop an ore characterisation method and subsequent model to evaluate liberation and separation methods for Au ore in the 4.75 – 0.3 mm size range

Affiliation
- WASM Gold Technology Group at Curtin University

Resources
- 5 of 15 staff
- 4 of 10 HDR students
- Feb 2017 – Feb 2020

Specialisation
- Ore characterisation
- Gangue rejection
- Optimisation

Key results to date
- Have developed and are refining ore characterisation method.
- Applying method to multiple ores with multiple crush types to investigate preferential liberation.
- Investigating various separation devices to determine optimal recovery scenarios for each ore and crush type.

What success looks like
- Understand attributes that make an ore amenable to coarse particle liberation by building a database of responses for various ore types, crushing modes and separation devices.
- Standardise the method and build a model in IES to predict responses and optimise recovery.
P3-006: AMIRA P9Q

Translate P9 research outcomes to an integrated process improvement tool (IES)

Affiliation
- 6 research institutes
- 11 industry sponsors
- 2017-2020

Resources
- Mineral processing
- Modelling

Key results to date
- Delivery of 6 process models in IES P9Q platform.
- Training workshop:
 - *Introduction to IES.*
 - *Introduction to process models.*

What success looks like
- Integration of comminution and flotation.
- 11 validated multi-component models.
- 2 test circuits for validation of process integration.
P3-008: Comminution optimised for Grade Engineering

Enhancing coarse gangue liberation through precisely controlled breakage energy using traditional and next generation Vertical Shaft Impactor (VSI) technologies

Affiliation

- RM, VJ, CA, PW
- 3 MPhil students
- Nov 2017 - Oct 2019

Resources

- Ore characterisation
- Selective ore breakage

Key results to date

- Project is in the early stages.
- One student has started.
- Some preliminary testing has been carried and the results have been reported to CRC ORE.

What success looks like

- Rejection of coarse clean gangue from a wider range of ore types.
- Use precisely controlled breakage to enhance the current GE approach.
- Laboratory testing protocols to identify ores suitable for coarse liberation.
- Significant reduction in unite energy consumption
P4-003: Data-driven models

Develop robust and effective data analytics approaches to extract value from data typically collected in the ore mining industry

Affiliation

- QUT

Resources

- 5 academics
- Jan 2017 – Dec 2018

Specialisation

- Data analytics
- Mathematical modelling
- Data-driven models

Key results to date

- Methodology and scripts to pre-process and analyse disparate data sets with visualisation in Power BI.
- Paper: Computational Modelling 2017
- Implementation of *uncertainty quantification* approaches to calibrate a crusher process model
- Initial approach to create *machine learning models* using process data and ore data

What success looks like

- New data-driven approach to calibrate process models using online process data, based on uncertainty quantification.
- Collection of methods and scripts to generate machine-learning based process models.
- Methods and scripts to clean, pre-process, and extract useful information from data (e.g. processing recipes).
Implementation Accelerator

Embed a process to fast track the implementation of CRC ORE’s technologies, based on Clareo’s proven FastPath methodology, incorporating principles of LEAN start-up and learning

Affiliation
- 4 person Clareo team
- CRC ORE members
- Pilot project

Resources
- Rapid and lean approach to innovation implementation

Key results to date
- Kicked off engagement in November after alignment on scope and approach.

What success looks like
- Develop and deliver an Accelerator program designed for CRC ORE.
- Deploy on one demonstration project initially.
- Once proven, wider deployment of the Accelerator program across CRC ORE.

Proven approach

BHP
Anglo American
Edison International
Baker Hughes
Contact Us

Paul Revell
0429 701 158
p.revell@crcore.org.au